Hilbert transforms and maximal functions along variable flat curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Hilbert Transforms along Curves I. the Monomial Case

We establish an L2×L2 to L estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.

متن کامل

Maximal cluster sets of L-analytic functions along arbitrary curves

Let Ω be a domain in the N -dimensional real space, L be an elliptic differential operator, and (Tn) be a sequence whose members belong to a certain class of operators defined on the space of L-analytic functions on Ω. It is proved in this paper the existence of a dense linear manifold of L-analytic functions all of whose nonzero members have maximal cluster sets under the action of every Tn al...

متن کامل

On the Boundedness of the Bilinear Hilbert Transform along “non-flat” Smooth Curves

We are proving L(R) × L(R) → L(R) bounds for the bilinear Hilbert transform HΓ along curves Γ = (t,−γ(t)) with γ being a smooth “non-flat” curve near zero and infinity.

متن کامل

Lp ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD

We prove L estimates on the Hilbert transform along a measurable, non-vanishing, one-variable vector field in R. Aside from an L estimate following from a simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely related to a recent paper of the first author ([2]).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2002

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-02-03087-8